If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-76x+180=0
a = 6; b = -76; c = +180;
Δ = b2-4ac
Δ = -762-4·6·180
Δ = 1456
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1456}=\sqrt{16*91}=\sqrt{16}*\sqrt{91}=4\sqrt{91}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-76)-4\sqrt{91}}{2*6}=\frac{76-4\sqrt{91}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-76)+4\sqrt{91}}{2*6}=\frac{76+4\sqrt{91}}{12} $
| 10=8+s | | 360=1/2×(2x+18)×x | | –3+4/5e=–2+3/2e+1/0e | | b+3÷5=6 | | 2.3y-4.2=-18 | | 75-3.5x-4x=4x-6 | | -2.7+1.9k=1.5-1.2k+k | | h/207=-3 | | -6(-c+2)=9c | | 2w+16=-2 | | 135+72+12x+16+9x+1+14x+1=54” | | 2(15c+8)=9(2c+4)-(3c+2 | | 12-11+2t=8+t | | 2(x+1)^2-35=2(x+1)2−35=15 | | 5+-3c=-7 | | −5+w=58 | | 19-2d=-20-17d-6 | | 2(x+6)-2=2x+2 | | 10x=20=80 | | 1.5(5+0.2)=0.4y-(0.6-0.9y) | | 46h2–13h=0 | | 21=24/z | | (13x-1)=(7x+1) | | 2.5h=60 | | -10+4x=-2x-52 | | 2.5t=102.5t=10 | | -3.2c=0.6-2.8c | | -5-3/2p=2p+25/2 | | 2x+6-12x=7-4x+17 | | -4x+8=3x-62 | | 4(c+5)=-16 | | -3x-5=-13-2x |